Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
2
2
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6. 0 < ||
L1
||
7. 0 < ||
L2
||
8.
x
= last(
L1
)
9.
y
= hd(
L2
)
i
:{0..(||
L1
@
L2
|| - 1)
}. (
x
= (
L1
@
L2
)[
i
] &
y
= (
L1
@
L2
)[(
i
+1)])
latex
by ((InstConcl [||
L1
|| - 1])
CollapseTHEN (Auto'))
latex
C
1
:
C1:
x
= (
L1
@
L2
)[(||
L1
|| - 1)]
C
2
:
C2:
y
= (
L1
@
L2
)[((||
L1
|| - 1)+1)]
C
.
Definitions
n
-
m
,
||
as
||
,
#$n
,
x
:
A
.
B
(
x
)
,
i
j
<
k
,
,
A
,
False
,
Void
,
-
n
,
i
j
,
hd(
l
)
,
last(
L
)
,
P
&
Q
,
x
:
A
B
(
x
)
,
,
{
x
:
A
|
B
(
x
)}
,
,
l
[
i
]
,
x
:
A
.
B
(
x
)
,
P
Q
,
x
:
A
B
(
x
)
,
t
T
,
A
B
,
n
+
m
,
as
@
bs
,
{
i
..
j
}
,
s
=
t
,
type
List
,
Type
,
a
<
b
Lemmas
nat
wf
,
member
wf
,
le
wf
,
append
wf
,
length
append
,
non
neg
length
,
select
wf
origin